EVALUAR EXPERSIONES ALGEBRAICAS
Consiste en sustituir el
o los valores proporcionados de las variables, para encontrar el valor numérico
de la expresión.
Es importante considerar
al evaluar una expresión algebraica alguno de los siguientes conceptos:
El signo del resultado será el signo del número con mayor
valor absoluto.
- 9 + 7 = - 2
9 - 7 = +2
Si los signos de los dos
números son iguales, el resultado tiene el signo que lleven los números.
9 + 7 = 16
-9 - 7 = -16
La multiplicación de números con signos diferentes da
resultado negativo
( + ) ( - ) = -
( - ) ( + ) = -
La multiplicación de
números con signos iguales da resultado positivo (+).
( - ) ( - ) = +
( + ) ( + ) = +
Para poder evaluar una expresión algebraica se deben de seguir los siguientes pasos:
1. Lea y analiza el
problema.
2. Resuelve la
evaluación de la expresión algebraica considerando algunos de los conceptos de
signos.
EXPONENTES ENTEROS
El exponente de una variable representa el número de veces que debe ser
multiplicada por sí misma. Se rigen por las siguientes leyes, siendo m y n los exponentes:
NOTACIÓN CIENTÍFICA
Es un recurso matemático empleado para simplificar cálculos y representar en forma concisa números muy grandes o muy pequeños. Para hacerlo se usan potencias de diez.
Para expresar un número en notación científica se identifica la coma decimal y se desplaza hacia la izquierda, si el número a convertir es mayor que 10, en cambio, si el número es menor que 1 (empieza con cero coma) se desplaza hacia la derecha tantos lugares como sea necesario para que (en ambos casos) el único dígito que quede a la izquierda de la coma esté entre 1 y 9 y que todos los otros dígitos aparezcan a la derecha de la coma decimal.
732,5051 = 7,325051 • 102
−0,005612 = −5,612 • 10−3
DR© Instituto
Tecnológico y de Estudios Superiores de Monterrey, Universidad Virtual |
México, 2004. Disponible en: http://www.cca.org.mx/
Universidad Nacional de Colombia. Sede Bogota. Disponible en: http://www.virtual.unal.edu.co/
Profesor en línea.Querelle y Cia Ltda. Santiago, Chile. http://www.profesorenlinea.cl/
No hay comentarios.:
Publicar un comentario